date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize: 'bool' = False, name: 'Hashable' = None, closed: 'str | None | lib.NoDefault' = <no_default>, inclusive: 'str | None' = None, **kwargs) -> 'DatetimeIndex'
Returns the range of equally spaced time points (where the difference between any two adjacent points is specified by the given frequency) such that they all satisfy :None:None:`start <[=] x <[=] end`
, where the first one and the last one are, resp., the first and last time points in that range that fall on the boundary of freq
(if given as a frequency string) or that are valid for freq
(if given as a pandas.tseries.offsets.DateOffset
). (If exactly one of start
, end
, or freq
is not specified, this missing parameter can be computed given periods
, the number of timesteps in the range. See the note below.)
Of the four parameters start
, end
, periods
, and freq
, exactly three must be specified. If freq
is omitted, the resulting DatetimeIndex
will have periods
linearly spaced elements between start
and end
(closed on both sides).
To learn more about the frequency strings, please see :None:None:`this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`
.
Left bound for generating dates.
Right bound for generating dates.
Number of periods to generate.
Frequency strings can have multiples, e.g. '5H'. See here <timeseries.offset_aliases>
for a list of frequency aliases.
Time zone name for returning localized DatetimeIndex, for example 'Asia/Hong_Kong'. By default, the resulting DatetimeIndex is timezone-naive.
Normalize start/end dates to midnight before generating date range.
Name of the resulting DatetimeIndex.
Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None, the default).
Argument :None:None:`closed`
has been deprecated to standardize boundary inputs. Use :None:None:`inclusive`
instead, to set each bound as closed or open.
Include boundaries; Whether to set each bound as closed or open.
For compatibility. Has no effect on the result.
Return a fixed frequency DatetimeIndex.
DatetimeIndex
An immutable container for datetimes.
interval_range
Return a fixed frequency IntervalIndex.
period_range
Return a fixed frequency PeriodIndex.
timedelta_range
Return a fixed frequency TimedeltaIndex.
Specifying the values
The next four examples generate the same DatetimeIndex
, but vary the combination of :None:None:`start`
, :None:None:`end`
and periods
.
Specify :None:None:`start`
and :None:None:`end`
, with the default daily frequency.
>>> pd.date_range(start='1/1/2018', end='1/08/2018') DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D')
Specify :None:None:`start`
and periods
, the number of periods (days).
>>> pd.date_range(start='1/1/2018', periods=8) DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D')
Specify :None:None:`end`
and periods
, the number of periods (days).
>>> pd.date_range(end='1/1/2018', periods=8) DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28', '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D')
Specify :None:None:`start`
, :None:None:`end`
, and periods
; the frequency is generated automatically (linearly spaced).
>>> pd.date_range(start='2018-04-24', end='2018-04-27', periods=3) DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00', '2018-04-27 00:00:00'], dtype='datetime64[ns]', freq=None)
Other Parameters
Changed the :None:None:`freq`
(frequency) to 'M'
(month end frequency).
>>> pd.date_range(start='1/1/2018', periods=5, freq='M') DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30', '2018-05-31'], dtype='datetime64[ns]', freq='M')
Multiples are allowed
This example is valid syntax, but we were not able to check execution>>> pd.date_range(start='1/1/2018', periods=5, freq='3M') DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq='3M')
:None:None:`freq`
can also be specified as an Offset object.
>>> pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3)) DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq='3M')
Specify :None:None:`tz`
to set the timezone.
>>> pd.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo') DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00', '2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00', '2018-01-05 00:00:00+09:00'], dtype='datetime64[ns, Asia/Tokyo]', freq='D')
inclusive
controls whether to include :None:None:`start`
and :None:None:`end`
that are on the boundary. The default, "both", includes boundary points on either end.
>>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive="both") DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')
Use inclusive='left'
to exclude :None:None:`end`
if it falls on the boundary.
>>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='left') DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='datetime64[ns]', freq='D')
Use inclusive='right'
to exclude :None:None:`start`
if it falls on the boundary, and similarly inclusive='neither'
will exclude both :None:None:`start`
and :None:None:`end`
.
>>> pd.date_range(start='2017-01-01', end='2017-01-04', inclusive='right') DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')See :
The following pages refer to to this document either explicitly or contain code examples using this.
pandas.core.indexes.datetimes.DatetimeIndex
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them