pandas 1.4.2

ParametersReturnsBackRef
map(self, mapper)

Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a ~pandas.CategoricalIndex which has the same order property as the original, otherwise an ~pandas.Index is returned.

If a :None:None:`dict` or ~pandas.Series is used any unmapped category is mapped to NaN . Note that if this happens an ~pandas.Index will be returned.

Parameters

mapper : function, dict, or Series

Mapping correspondence.

Returns

pandas.CategoricalIndex or pandas.Index

Mapped index.

Map values using input an input mapping or function.

See Also

Index.map

Apply a mapping correspondence on an :None:class:`~pandas.Index`.

Series.apply

Apply more complex functions on a :None:class:`~pandas.Series`.

Series.map

Apply a mapping correspondence on a :None:class:`~pandas.Series`.

Examples

This example is valid syntax, but we were not able to check execution
>>> idx = pd.CategoricalIndex(['a', 'b', 'c'])
... idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category')
This example is valid syntax, but we were not able to check execution
>>> idx.map(lambda x: x.upper())
CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'],
                 ordered=False, dtype='category')
This example is valid syntax, but we were not able to check execution
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'})
CategoricalIndex(['first', 'second', 'third'], categories=['first',
                 'second', 'third'], ordered=False, dtype='category')

If the mapping is one-to-one the ordering of the categories is preserved:

This example is valid syntax, but we were not able to check execution
>>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True)
... idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category')
This example is valid syntax, but we were not able to check execution
>>> idx.map({'a': 3, 'b': 2, 'c': 1})
CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True,
                 dtype='category')

If the mapping is not one-to-one an ~pandas.Index is returned:

This example is valid syntax, but we were not able to check execution
>>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'})
Index(['first', 'second', 'first'], dtype='object')

If a :None:None:`dict` is used, all unmapped categories are mapped to NaN and the result is an ~pandas.Index :

This example is valid syntax, but we were not able to check execution
>>> idx.map({'a': 'first', 'b': 'second'})
Index(['first', 'second', nan], dtype='object')
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

pandas.core.arrays.categorical.Categorical.map

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


File: /pandas/core/indexes/category.py#507
type: <class 'function'>
Commit: