remove_categories(self, removals, inplace=<no_default>)
:None:None:`removals`
must be included in the old categories. Values which were in the removed categories will be set to NaN
The categories which should be removed.
Whether or not to remove the categories inplace or return a copy of this categorical with removed categories.
If the removals are not contained in the categories
Categorical with removed categories or None if inplace=True
.
Remove the specified categories.
add_categories
Add new categories.
remove_unused_categories
Remove categories which are not used.
rename_categories
Rename categories.
reorder_categories
Reorder categories.
set_categories
Set the categories to the specified ones.
>>> c = pd.Categorical(['a', 'c', 'b', 'c', 'd'])This example is valid syntax, but we were not able to check execution
... c ['a', 'c', 'b', 'c', 'd'] Categories (4, object): ['a', 'b', 'c', 'd']
>>> c.remove_categories(['d', 'a']) [NaN, 'c', 'b', 'c', NaN] Categories (2, object): ['b', 'c']See :
The following pages refer to to this document either explicitly or contain code examples using this.
pandas.core.arrays.categorical.Categorical.set_categories
pandas.core.arrays.categorical.Categorical.add_categories
pandas.core.arrays.categorical.Categorical.rename_categories
pandas.core.arrays.categorical.Categorical.remove_unused_categories
pandas.core.arrays.categorical.Categorical.reorder_categories
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them