pandas 1.4.2

ParametersBackRef
assert_series_equal(left, right, check_dtype=True, check_index_type='equiv', check_series_type=True, check_less_precise=<no_default>, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, check_freq=True, check_flags=True, rtol=1e-05, atol=1e-08, obj='Series', *, check_index=True)

Parameters

left : Series
right : Series
check_dtype : bool, default True

Whether to check the Series dtype is identical.

check_index_type : bool or {'equiv'}, default 'equiv'

Whether to check the Index class, dtype and inferred_type are identical.

check_series_type : bool, default True

Whether to check the Series class is identical.

check_less_precise : bool or int, default False

Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare.

When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the ratio of the second number to the first number and check whether it is equivalent to 1 within the specified precision.

deprecated

Use :None:None:`rtol` and :None:None:`atol` instead to define relative/absolute tolerance, respectively. Similar to :None:func:`math.isclose`.

check_names : bool, default True

Whether to check the Series and Index names attribute.

check_exact : bool, default False

Whether to compare number exactly.

check_datetimelike_compat : bool, default False

Compare datetime-like which is comparable ignoring dtype.

check_categorical : bool, default True

Whether to compare internal Categorical exactly.

check_category_order : bool, default True

Whether to compare category order of internal Categoricals.

versionadded
check_freq : bool, default True

Whether to check the :None:None:`freq` attribute on a DatetimeIndex or TimedeltaIndex.

versionadded
check_flags : bool, default True

Whether to check the flags attribute.

versionadded
rtol : float, default 1e-5

Relative tolerance. Only used when check_exact is False.

versionadded
atol : float, default 1e-8

Absolute tolerance. Only used when check_exact is False.

versionadded
obj : str, default 'Series'

Specify object name being compared, internally used to show appropriate assertion message.

check_index : bool, default True

Whether to check index equivalence. If False, then compare only values.

versionadded

Check that left and right Series are equal.

Examples

This example is valid syntax, but we were not able to check execution
>>> from pandas import testing as tm
... a = pd.Series([1, 2, 3, 4])
... b = pd.Series([1, 2, 3, 4])
... tm.assert_series_equal(a, b)
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

pandas._testing.asserters.assert_frame_equal pandas._testing.asserters.assert_series_equal

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


File: /pandas/_testing/asserters.py#870
type: <class 'function'>
Commit: