matplotlib 3.5.1

>>> """
============
Image Masked
============

imshow with masked array input and out-of-range colors.

The second subplot illustrates the use of BoundaryNorm to
get a filled contour effect.
"""
... 
... import numpy as np
... import matplotlib.pyplot as plt
... import matplotlib.colors as colors
... 
... # compute some interesting data
... x0, x1 = -5, 5
... y0, y1 = -3, 3
... x = np.linspace(x0, x1, 500)
... y = np.linspace(y0, y1, 500)
... X, Y = np.meshgrid(x, y)
... Z1 = np.exp(-X**2 - Y**2)
... Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
... Z = (Z1 - Z2) * 2
... 
... # Set up a colormap:
... palette = plt.cm.gray.with_extremes(over='r', under='g', bad='b')
... # Alternatively, we could use
... # palette.set_bad(alpha = 0.0)
... # to make the bad region transparent. This is the default.
... # If you comment out all the palette.set* lines, you will see
... # all the defaults; under and over will be colored with the
... # first and last colors in the palette, respectively.
... Zm = np.ma.masked_where(Z > 1.2, Z)
... 
... # By setting vmin and vmax in the norm, we establish the
... # range to which the regular palette color scale is applied.
... # Anything above that range is colored based on palette.set_over, etc.
... 
... # set up the Axes objects
... fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(6, 5.4))
... 
... # plot using 'continuous' colormap
... im = ax1.imshow(Zm, interpolation='bilinear',
...  cmap=palette,
...  norm=colors.Normalize(vmin=-1.0, vmax=1.0),
...  aspect='auto',
...  origin='lower',
...  extent=[x0, x1, y0, y1])
... ax1.set_title('Green=low, Red=high, Blue=masked')
... cbar = fig.colorbar(im, extend='both', shrink=0.9, ax=ax1)
... cbar.set_label('uniform')
... for ticklabel in ax1.xaxis.get_ticklabels():
...  ticklabel.set_visible(False)
... 
... # Plot using a small number of colors, with unevenly spaced boundaries.
... im = ax2.imshow(Zm, interpolation='nearest',
...  cmap=palette,
...  norm=colors.BoundaryNorm([-1, -0.5, -0.2, 0, 0.2, 0.5, 1],
...  ncolors=palette.N),
...  aspect='auto',
...  origin='lower',
...  extent=[x0, x1, y0, y1])
... ax2.set_title('With BoundaryNorm')
... cbar = fig.colorbar(im, extend='both', spacing='proportional',
...  shrink=0.9, ax=ax2)
... cbar.set_label('proportional')
... 
... fig.suptitle('imshow, with out-of-range and masked data')
... plt.show()
... 
... #############################################################################
... #
... # .. admonition:: References
... #
... # The use of the following functions, methods, classes and modules is shown
... # in this example:
... #
... # - `matplotlib.axes.Axes.imshow` / `matplotlib.pyplot.imshow`
... # - `matplotlib.figure.Figure.colorbar` / `matplotlib.pyplot.colorbar`
... # - `matplotlib.colors.BoundaryNorm`
... # - `matplotlib.colorbar.Colorbar.set_label`
...