matplotlib 3.5.1

>>> """
=========================
Hatch-filled histograms
=========================

Hatching capabilities for plotting histograms.
"""
... 
... import itertools
... from functools import partial
... 
... import numpy as np
... import matplotlib.pyplot as plt
... import matplotlib.ticker as mticker
... from cycler import cycler
... 
... 
... def filled_hist(ax, edges, values, bottoms=None, orientation='v',
...  **kwargs):
...  """ Draw a histogram as a stepped patch. Parameters ---------- ax : Axes The axes to plot to edges : array A length n+1 array giving the left edges of each bin and the right edge of the last bin. values : array A length n array of bin counts or values bottoms : float or array, optional A length n array of the bottom of the bars. If None, zero is used. orientation : {'v', 'h'} Orientation of the histogram. 'v' (default) has the bars increasing in the positive y-direction. **kwargs Extra keyword arguments are passed through to `.fill_between`. Returns ------- ret : PolyCollection Artist added to the Axes """
...  print(orientation)
...  if orientation not in 'hv':
...  raise ValueError("orientation must be in {{'h', 'v'}} "
...  "not {o}".format(o=orientation))
... 
...  kwargs.setdefault('step', 'post')
...  kwargs.setdefault('alpha', 0.7)
...  edges = np.asarray(edges)
...  values = np.asarray(values)
...  if len(edges) - 1 != len(values):
...  raise ValueError('Must provide one more bin edge than value not: '
...  'len(edges): {lb} len(values): {lv}'.format(
...  lb=len(edges), lv=len(values)))
... 
...  if bottoms is None:
...  bottoms = 0
...  bottoms = np.broadcast_to(bottoms, values.shape)
... 
...  values = np.append(values, values[-1])
...  bottoms = np.append(bottoms, bottoms[-1])
...  if orientation == 'h':
...  return ax.fill_betweenx(edges, values, bottoms,
...  **kwargs)
...  elif orientation == 'v':
...  return ax.fill_between(edges, values, bottoms,
...  **kwargs)
...  else:
...  raise AssertionError("you should never be here")
... 
... 
... def stack_hist(ax, stacked_data, sty_cycle, bottoms=None,
...  hist_func=None, labels=None,
...  plot_func=None, plot_kwargs=None):
...  """ Parameters ---------- ax : axes.Axes The axes to add artists too stacked_data : array or Mapping A (M, N) shaped array. The first dimension will be iterated over to compute histograms row-wise sty_cycle : Cycler or operable of dict Style to apply to each set bottoms : array, default: 0 The initial positions of the bottoms. hist_func : callable, optional Must have signature `bin_vals, bin_edges = f(data)`. `bin_edges` expected to be one longer than `bin_vals` labels : list of str, optional The label for each set. If not given and stacked data is an array defaults to 'default set {n}' If *stacked_data* is a mapping, and *labels* is None, default to the keys. If *stacked_data* is a mapping and *labels* is given then only the columns listed will be plotted. plot_func : callable, optional Function to call to draw the histogram must have signature: ret = plot_func(ax, edges, top, bottoms=bottoms, label=label, **kwargs) plot_kwargs : dict, optional Any extra keyword arguments to pass through to the plotting function. This will be the same for all calls to the plotting function and will override the values in *sty_cycle*. Returns ------- arts : dict Dictionary of artists keyed on their labels """
...  # deal with default binning function
...  if hist_func is None:
...  hist_func = np.histogram
... 
...  # deal with default plotting function
...  if plot_func is None:
...  plot_func = filled_hist
... 
...  # deal with default
...  if plot_kwargs is None:
...  plot_kwargs = {}
...  print(plot_kwargs)
...  try:
...  l_keys = stacked_data.keys()
...  label_data = True
...  if labels is None:
...  labels = l_keys
... 
...  except AttributeError:
...  label_data = False
...  if labels is None:
...  labels = itertools.repeat(None)
... 
...  if label_data:
...  loop_iter = enumerate((stacked_data[lab], lab, s)
...  for lab, s in zip(labels, sty_cycle))
...  else:
...  loop_iter = enumerate(zip(stacked_data, labels, sty_cycle))
... 
...  arts = {}
...  for j, (data, label, sty) in loop_iter:
...  if label is None:
...  label = 'dflt set {n}'.format(n=j)
...  label = sty.pop('label', label)
...  vals, edges = hist_func(data)
...  if bottoms is None:
...  bottoms = np.zeros_like(vals)
...  top = bottoms + vals
...  print(sty)
...  sty.update(plot_kwargs)
...  print(sty)
...  ret = plot_func(ax, edges, top, bottoms=bottoms,
...  label=label, **sty)
...  bottoms = top
...  arts[label] = ret
...  ax.legend(fontsize=10)
...  return arts
... 
... 
... # set up histogram function to fixed bins
... edges = np.linspace(-3, 3, 20, endpoint=True)
... hist_func = partial(np.histogram, bins=edges)
... 
... # set up style cycles
... color_cycle = cycler(facecolor=plt.rcParams['axes.prop_cycle'][:4])
... label_cycle = cycler(label=['set {n}'.format(n=n) for n in range(4)])
... hatch_cycle = cycler(hatch=['/', '*', '+', '|'])
... 
... # Fixing random state for reproducibility
... np.random.seed(19680801)
... 
... stack_data = np.random.randn(4, 12250)
... dict_data = dict(zip((c['label'] for c in label_cycle), stack_data))
... 
... ###############################################################################
... # Work with plain arrays
... 
... fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4.5), tight_layout=True)
... arts = stack_hist(ax1, stack_data, color_cycle + label_cycle + hatch_cycle,
...  hist_func=hist_func)
... 
... arts = stack_hist(ax2, stack_data, color_cycle,
...  hist_func=hist_func,
...  plot_kwargs=dict(edgecolor='w', orientation='h'))
... ax1.set_ylabel('counts')
... ax1.set_xlabel('x')
... ax2.set_xlabel('counts')
... ax2.set_ylabel('x')
... 
... ###############################################################################
... # Work with labeled data
... 
... fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4.5),
...  tight_layout=True, sharey=True)
... 
... arts = stack_hist(ax1, dict_data, color_cycle + hatch_cycle,
...  hist_func=hist_func)
... 
... arts = stack_hist(ax2, dict_data, color_cycle + hatch_cycle,
...  hist_func=hist_func, labels=['set 0', 'set 3'])
... ax1.xaxis.set_major_locator(mticker.MaxNLocator(5))
... ax1.set_xlabel('counts')
... ax1.set_ylabel('x')
... ax2.set_ylabel('x')
... 
... plt.show()
... 
... #############################################################################
... #
... # .. admonition:: References
... #
... # The use of the following functions, methods, classes and modules is shown
... # in this example:
... #
... # - `matplotlib.axes.Axes.fill_betweenx` / `matplotlib.pyplot.fill_betweenx`
... # - `matplotlib.axes.Axes.fill_between` / `matplotlib.pyplot.fill_between`
... # - `matplotlib.axis.Axis.set_major_locator`
...