matplotlib 3.5.1

>>> """
=========================
Violin plot customization
=========================

This example demonstrates how to fully customize violin plots. The first plot
shows the default style by providing only the data. The second plot first
limits what Matplotlib draws with additional keyword arguments. Then a
simplified representation of a box plot is drawn on top. Lastly, the styles of
the artists of the violins are modified.

For more information on violin plots, the scikit-learn docs have a great
section: https://scikit-learn.org/stable/modules/density.html
"""
... 
... import matplotlib.pyplot as plt
... import numpy as np
... 
... 
... def adjacent_values(vals, q1, q3):
...  upper_adjacent_value = q3 + (q3 - q1) * 1.5
...  upper_adjacent_value = np.clip(upper_adjacent_value, q3, vals[-1])
... 
...  lower_adjacent_value = q1 - (q3 - q1) * 1.5
...  lower_adjacent_value = np.clip(lower_adjacent_value, vals[0], q1)
...  return lower_adjacent_value, upper_adjacent_value
... 
... 
... def set_axis_style(ax, labels):
...  ax.xaxis.set_tick_params(direction='out')
...  ax.xaxis.set_ticks_position('bottom')
...  ax.set_xticks(np.arange(1, len(labels) + 1), labels=labels)
...  ax.set_xlim(0.25, len(labels) + 0.75)
...  ax.set_xlabel('Sample name')
... 
... 
... # create test data
... np.random.seed(19680801)
... data = [sorted(np.random.normal(0, std, 100)) for std in range(1, 5)]
... 
... fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(9, 4), sharey=True)
... 
... ax1.set_title('Default violin plot')
... ax1.set_ylabel('Observed values')
... ax1.violinplot(data)
... 
... ax2.set_title('Customized violin plot')
... parts = ax2.violinplot(
...  data, showmeans=False, showmedians=False,
...  showextrema=False)
... 
... for pc in parts['bodies']:
...  pc.set_facecolor('#D43F3A')
...  pc.set_edgecolor('black')
...  pc.set_alpha(1)
... 
... quartile1, medians, quartile3 = np.percentile(data, [25, 50, 75], axis=1)
... whiskers = np.array([
...  adjacent_values(sorted_array, q1, q3)
...  for sorted_array, q1, q3 in zip(data, quartile1, quartile3)])
... whiskers_min, whiskers_max = whiskers[:, 0], whiskers[:, 1]
... 
... inds = np.arange(1, len(medians) + 1)
... ax2.scatter(inds, medians, marker='o', color='white', s=30, zorder=3)
... ax2.vlines(inds, quartile1, quartile3, color='k', linestyle='-', lw=5)
... ax2.vlines(inds, whiskers_min, whiskers_max, color='k', linestyle='-', lw=1)
... 
... # set style for the axes
... labels = ['A', 'B', 'C', 'D']
... for ax in [ax1, ax2]:
...  set_axis_style(ax, labels)
... 
... plt.subplots_adjust(bottom=0.15, wspace=0.05)
... plt.show()
... 
... #############################################################################
... #
... # .. admonition:: References
... #
... # The use of the following functions, methods, classes and modules is shown
... # in this example:
... #
... # - `matplotlib.axes.Axes.violinplot` / `matplotlib.pyplot.violinplot`
... # - `matplotlib.axes.Axes.vlines` / `matplotlib.pyplot.vlines`
...