matplotlib 3.5.1

>>> """
==================================
Colormap Normalizations Symlognorm
==================================

Demonstration of using norm to map colormaps onto data in non-linear ways.
"""
... 
... import numpy as np
... import matplotlib.pyplot as plt
... import matplotlib.colors as colors
... 
... """ SymLogNorm: two humps, one negative and one positive, The positive with 5-times the amplitude. Linearly, you cannot see detail in the negative hump. Here we logarithmically scale the positive and negative data separately. Note that colorbar labels do not come out looking very good. """
... 
... N = 100
... X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
... Z1 = np.exp(-X**2 - Y**2)
... Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
... Z = (Z1 - Z2) * 2
... 
... fig, ax = plt.subplots(2, 1)
... 
... pcm = ax[0].pcolormesh(X, Y, Z,
...  norm=colors.SymLogNorm(linthresh=0.03, linscale=0.03,
...  vmin=-1.0, vmax=1.0, base=10),
...  cmap='RdBu_r', shading='nearest')
... fig.colorbar(pcm, ax=ax[0], extend='both')
... 
... pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z),
...  shading='nearest')
... fig.colorbar(pcm, ax=ax[1], extend='both')
... 
... plt.show()
...